# LBSL: Defects in energy metabolism and in-vitro response to treatment with aminolaevulinic acid

J. Abdenur, M.D. Chief, Division of Metabolic Disorders Director, Metabolic Laboratory CHOC Children's, Orange CA, USA

2022 LBSL International Patient Conference Kennedy Krieger Institute July 30 - August 01, 2022



# No conflicts of interest related to this presentation



### CHOC Mitochondrial Disease Patients (April 2022)

| Mitochondrial Disease due to mtDNA defects                                 |    |  |  |  |
|----------------------------------------------------------------------------|----|--|--|--|
| mtDNA mutation known to be deleterious                                     | 18 |  |  |  |
| mtDNA mutation of unknown significance                                     | 5  |  |  |  |
| mtDNA deletion                                                             |    |  |  |  |
| Mitochondrial Disease due to nuclear DNA defects                           |    |  |  |  |
| ETC Complex / Assembly Defects:                                            |    |  |  |  |
| NDUFAF5 (3), UQCRC2 (2), SURF1 (2), NUPBL (2), BCS1L, SCO2                 | 11 |  |  |  |
| mtDNA Synthesis / Stability:                                               |    |  |  |  |
| SUCLG1, POLG1-Alpers (3), RRM2B (2), TFAM, MRPS22,                         | 8  |  |  |  |
| Protein folding, import, export and turnover. Iron cluster biogenesis      |    |  |  |  |
| LONP1 (2), FBXL4 (4), SPATA5 (2), SFX4, FDXR                               | 10 |  |  |  |
| Mitochondrial Protein Synthesis                                            |    |  |  |  |
| GFM1, MT01, NARS2 (2), EARS2 (2), KARS, VARS2, DARS2 (2), RARS2 (2), PDE12 | 13 |  |  |  |
| Other                                                                      |    |  |  |  |
| TAZ (Barth syndrome), HIBCH (2), ECHS1 (6), ETHE1 (2), PC (1), PDH (9)     | 21 |  |  |  |
| Total                                                                      | 93 |  |  |  |

### CHOC Mitochondrial Disease Patients (April 2022)

| Mitochondrial Disease due to mtDNA defects                                 |    |  |  |  |
|----------------------------------------------------------------------------|----|--|--|--|
| mtDNA mutation known to be deleterious                                     | 18 |  |  |  |
| mtDNA mutation of unknown significance                                     | 5  |  |  |  |
| mtDNA deletion                                                             |    |  |  |  |
| Mitochondrial Disease due to nuclear DNA defects                           |    |  |  |  |
| ETC Complex / Assembly Defects:                                            |    |  |  |  |
| NDUFAF5 (3), UQCRC2 (2), SURF1 (2), NUPBL (2), BCS1L, SCO2                 |    |  |  |  |
| mtDNA Synthesis / Stability:                                               |    |  |  |  |
| SUCLG1, POLG1-Alpers (3), RRM2B (2), TFAM, MRPS22,                         | 8  |  |  |  |
| Protein folding, import, export and turnover. Iron cluster biogenesis      |    |  |  |  |
| LONP1 (2), FBXL4 (4), SPATA5 (2), SFX4, FDXR                               | 10 |  |  |  |
| Mitochondrial Protein Synthesis                                            |    |  |  |  |
| GFM1, MTO1, NARS2 (2), EARS2 (2), KARS, VARS2, DARS2 (2), RARS2 (2), PDE12 | 13 |  |  |  |
| Other                                                                      |    |  |  |  |
| TAZ (Barth syndrome), HIBCH (2), ECHS1 (6), ETHE1 (2), PC (1), PDH (9)     | 21 |  |  |  |
| Total                                                                      | 93 |  |  |  |



Smith Fine et al., Journal of Neurodevelopmental Disorders 11 (2019) 295

### Aspartyl tRNA synthetase (DARS2) deficiency

- Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevations (LBSL)
- Heterogeneous clinical presentation
  - Onset in infancy, severe
  - Adult onset, mild and slowly progressive
  - Exercise Induced Paroxysmal Ataxia (rare)
- Characteristic MRI pattern
- Genotype appears to determine the phenotype

Scheper GC, et al., Nature Genetics 39 (2007) 534-539 Berge LV, et al., Brain 137 (2014) 1019–1029 Synofzik M, et al., J Med Genet 48 (2011) 713e715

### **Patient 1: Initial evaluation**

- Triplet pregnancy, 28-week preemie, 3 m NICU stay
- History of intermittent headaches since age 4.9 y
- Referred at age 8 y due to worsening headaches and abnormal MRI





Hyperintensities in white matter, brainstem, and spinal cord. Increased lactate in MRS



### **Targeted mutation analysis for DARS2**

Sanger sequencing uncovered a novel mutation in Intron 2 and established phase

|           | Intron 2              | Intron 5             |
|-----------|-----------------------|----------------------|
| Mother    | Normal<br>Normal      | c.492+2T>C<br>Normal |
| Father    | c.228-17C>G<br>Normal | Normal<br>Normal     |
| Patient 1 | c.228-17C>G<br>Normal | c.492+2T>C<br>Normal |

IGAAGG ACCAACCICIGITATIA

D genomic

TGAAG

# **Family Studies**

Identification of a 2<sup>nd</sup> affected family member

|           | Intron 2              | Intron 5             |
|-----------|-----------------------|----------------------|
| Mother    | Normal<br>Normal      | c.492+2T>C<br>Normal |
| Father    | c.228-17C>G<br>Normal | Normal<br>Normal     |
| Patient 1 | c.228-17C>G<br>Normal | c.492+2T>C<br>Normal |
| Sibling 1 | Normal<br>Normal      | Normal<br>Normal     |
| Sibling 2 | c.228-17C>G<br>Normal | Normal<br>Normal     |
| Patient 2 | c.228-17C>G<br>Normal | c.492+2T>C<br>Normal |

### Patient 2: Initial evaluation (age 4)

- Normal pregnancy and delivery
- History of intermittent leg pain
- MRI at age 5 y: Bilateral and symmetric hyperintense T2 signal abnormalities in the supraventricular and periventricular white matter (yellow arrows).
  Abnormal signal intensities in the posterior limbs of the internal capsule, pyramids at the level of the medulla, and dorsal columns of the spinal cord.
  A right intraventricular cyst (green arrow) was also uncovered.





# E-Lab Fibroblasts studies



### **Skipping of exon 3 in patients**



RT-PCR results suggested skipping of exon 3 in the father and the two patients harboring the intron 2 mutation



# DARS2 mRNA levels – qPCR

Carriers and patients showed lower expression of mRNA levels

qPCR Method: Taqman Assay Primer set: Thermo Fisher Hs01016220\_m1





### **DARS2 Protein levels – Western Blot**

Patients showed reduced levels of DARS2 protein

Adult Control Father Mother Sibline Batient 2 Batient 2 Batient 2





### Lactic acid levels in cultured media

Patients showed elevated lactic acid levels in the culture media



Instrument: Infinite M Plex Kit : POINTE™ Lactate Reagent Set (L7596-50)



# **Reactive oxygen species (ROS) levels**

### **Patients showed elevated ROS production**



#### Mitochondrial Superoxide level

Flow cytometry Assay (BD Melody) Leipnitz G et al. <u>Sci Rep.</u> 2018; 8: 1165.

- MitoSOX<sup>™</sup> Red: Mitochondrial Superoxide
- MitoTracker<sup>™</sup> Green: mt content (Normalization)



# **Oxygen consumption rate**

Patients showed decreased basal respiration and spare respiratory capacity



**Basal Respiration** 





# Mitochondria morphology - Microscopy

### Patients showed fragmented mitochondrial network

Sibling 1

### Patient 1

### Patient 2



#### Fluorescent Microscope:

Live-cell staining MitoTracker™ Green

Deconvolution: Image J plug-in

# Mitochondrial Network Analysis (MiNA)

Patients showed decreased mitochondrial intensity, length, and number of branches Quantification method Image J, Plug-in / MiNA



### **Transcriptome Analysis**

Method: RNAseq Software: Kallisto and limma (R & R Studio)

NS Log<sub>2</sub> FC p – value and log<sub>2</sub> FC
2.0
TAPBP RING1 CTAG2 WNT16 SLC1A2 TFPI BNIP3 RXRB PING1



total = 13589 variables

|         | Downregulated genes |             |      |  |  |
|---------|---------------------|-------------|------|--|--|
|         | Gene Symbol         | adj.P.value |      |  |  |
|         | VARS2               | -5.29       | 0.06 |  |  |
|         | TSTD1               | -4.70       | 0.08 |  |  |
|         | PDK4                | -2.68       | 0.24 |  |  |
| c v →   | MT-ATP6             | -1.99       | 0.18 |  |  |
| c v →   | MT-ATP8             | -1.91       | 0.15 |  |  |
| cı →    | MT-ND3              | -1.78       | 0.23 |  |  |
| c ıv →  | COX7A1              | -1.66       | 0.14 |  |  |
| c IV →  | MT-CO2              | -1.62       | 0.20 |  |  |
| CI →    | MT-ND4L             | -1.45       | 0.18 |  |  |
|         | OXCT2               | -1.42       | 0.24 |  |  |
| CI →    | MT-ND6              | -1.40       | 0.21 |  |  |
| CI →    | MT-ND4              | -1.37       | 0.22 |  |  |
| C III → | MT-CYB              | -1.26       | 0.25 |  |  |
| cı —    | MT-ND1              | -1.25       | 0.18 |  |  |
| cı →    | MT-ND5              | -1.18       | 0.21 |  |  |
|         | ACSS3               | -1.17       | 0.18 |  |  |
|         | MTHFS               | -1.11       | 0.30 |  |  |
| c v →   | ATP23               | -1.09       | 0.34 |  |  |
| C IV →  | MT-CO1              | -1.01       | 0.28 |  |  |
|         | ACOT11              | -1.00       | 0.19 |  |  |
|         |                     |             |      |  |  |

# MitoCarta3.0 collection

| Upregulated genes |                                 |             |  |
|-------------------|---------------------------------|-------------|--|
| Gene Symbol       | Fold change (log <sub>2</sub> ) | adj.P.value |  |
| C6orf136          | 1.76                            | 0.25        |  |
| PDK1              | 1.74                            | 0.13        |  |
| AMT               | 1.72                            | 0.18        |  |
| C17orf47          | 1.71                            | 0.28        |  |
| HSD17B8           | 1.67                            | 0.73        |  |
| BNIP3             | 1.55                            | 0.05        |  |
| MGARP             | 1.26                            | 0.32        |  |
| MTFP1             | 1.20                            | 0.33        |  |
| MRPL23            | 1.12                            | 0.16        |  |

# **DARS2** Pathway



Smith Fine et al., Journal of Neurodevelopmental Disorders 11 (2019) 29<sup>3</sup>

### Treatment ?





# **DARS2 Treatment**

| No. | ID     | Sex | Age of onset | Clinical<br>diagnosis | Affected complex | Gene    | Mutations                             |
|-----|--------|-----|--------------|-----------------------|------------------|---------|---------------------------------------|
| 1   | Pt25   | F   | 5 m          | IMD                   | CI               | ACAD9   | c.811T>G:p.C271G/ c.1766-2A>G         |
| 2   | Pt27   | М   | 1 y          | LS                    | CIV              | SURF1   | c.743C>A:p.A248D/ c.743C>A:p.A248D    |
| 3   | Pt67   | М   | 0 d          | IMD                   | CI               | NDUFB11 | c.391G > A:p.E131K (hemizygous)       |
| 4   | Pt100  | М   | 8 m          | ND                    | CI               | NDUFV2  | c.580G > A:p.E194K/ unknown           |
| 5   | Pt101  | М   | 11 m         | LS                    | CI               | NDUFAF6 | c.371T>C:p.I124T/ c.805C>G:p.H269D    |
| 6   | Pt276  | М   | l y 11 m     | MH                    | CI+IV            | MRPS23  | c.119C>G:p.P40R/ c.119C>G:p.P40R      |
| 7   | Pt346  | F   | 0 d          | IMD                   | CI               | ECHS1   | c.176A > G:p.N598/ c.476A > G:p.Q159R |
| 8   | Pt1177 | F   | 9 m          | LS                    | CI               | NDUFV2  | c.427C>T:p.R143X/ c.580G>A:p.E194K    |

### OPEN Effects of 5-aminolevulinic acid and sodium ferrous citrate on fibroblasts from individuals with mitochondrial diseases

SCIENTIFIC **REPORTS** 

Masaru Shimura<sup>1</sup>, Naoko Nozawa<sup>2</sup>, Minako Ogawa-Tominaga<sup>1</sup>, Takuya Fushimi<sup>1</sup>, Makiko Tajika<sup>1</sup>, Keiko Ichimoto<sup>1</sup>, Ayako Matsunaga<sup>1</sup>, Tomoko Tsuruoka<sup>1</sup>, Yoshihito Kishita<sup>3</sup>, Takuya Ishii<sup>2</sup>, Kiwamu Takahashi<sup>2</sup>, Tohru Tanaka<sup>2</sup>, Motowo Nakajima<sup>2</sup>, Yasushi Okazaki<sup>3</sup>, Akira Ohtake<sup>4,5</sup> & Kei Murayama<sup>1</sup>

- 5-Aminolevulinic acid(ALA)/sodium ferrous citrate (SFC) treatment in patients with different mitochondrial diseases
- Increased oxygen consumption rate, ATP levels and mitochondrial copy number after 5-ALA/SFC treatment

### **Mitochondrial iron-containing proteins**



Adapted from Maio et al, Cell Metabolism 25 (2017) 945–953<sup>26</sup>

### Haeme biosynthesis



### Oxygen consumption rate Seahorse

**Treatment for 5 weeks on Sibling1 Mitochondrial Respiration** 30.0 DMSO - 🛦 - ALA/Fe++ 25.0 OCR (pmol/min/ug) 20.0 15.0 10.0 5.0 0.0 20 40 60 80 100 120 0 Time (min)



### **Oxygen consumption rate** Seahorse

Treatment for 5 weeks on Patient1





### **Extracellular acidification rate (ECAR) Seahorse**



Lactic acid

\*\*

ALA/Fe++

### **Respiratory chain complex enzyme activities**



Interaction:  $F_{(2,12)} = 5.193$ ; P = 0.02Treatment:  $F_{(1,12)} = 6.770; P = 0.02$ Genotype: F<sub>(2,12)</sub>= 0.9220; P= 0.4

Interaction:  $F_{(2,12)}$  = 3.087; P= 0.08 Treatment: F<sub>(1,12)</sub>= 81.28; P= <0.0001 Genotype: F<sub>(2,12)</sub>= 16.57; P= 0.0004

Interaction: F<sub>(2,12)</sub>= 6.796; P= 0.01 Treatment: F<sub>(1,12)</sub>= 159.6; P= <0.0001 Genotype: F<sub>(2,12)</sub>= 4.349; P= 0.03

### **GSH & GSSG levels in cell homogenates**





**GSH/GSSG Ratio** 



Interaction:  $F_{(2,12)}$ = 10.56; p= 0.002 Genotype:  $F_{(1,12)}$ = 0.132; p= 0.723 Treatment:  $F_{(2,12)}$ = 19.52; p< 0.001

Interaction:  $F_{(2,12)}$ = 1.07; p= 0.374 Genotype:  $F_{(1,12)}$ = 13.71; p= 0.003 Treatment:  $F_{(2,12)}$ = 12.09; p= 0.001

Interaction:  $F_{(2,12)}$ = 1.86; p= 0.198 Genotype:  $F_{(1,12)}$ = 3.43; p= 0.090 Treatment:  $F_{(2,12)}$ = 0.88; p= 0.440

### Haemoxygenase 1 (HO-1) content after treatment

C: Control T: Treatment (ALA + iron)



### Summary & next steps



### Acknowledgements

### **Energy-Lab Team**

Jose Abdenur, MD Alexandra Latini, PhD Wei-Lin Huang, MS Alexander Stover MS Tuany Eichwald, MS Sarah Ibrahim, BS

Philip Schwartz, PhD Mariella Simon, PhD Daniel Nguyen, BS CHOC Clinical Team R.Chang MD, R.Wang MD M.Boyer PNP, R.Sponberg PNP R.Barrick CGC, K.Schwan CGC M.Sowa RD, J.Skaar RD, K.Chen RD C.Daum RN, J.Hager RN E.Esparza MA L.Esqueda Admin

CHOC Metabolic Laboratory D. Butoi CLS B Evans, S. Xu M. Aguirre Thank You!